Dreyer

Poster Abstract Title: 
Uranium-series disequilibria of inflated sections of the Juan de Fuca Ridge: Implications for mantle melting
Authors and their affiliations: 
Brian M Dreyer(1), James B Gill(2), Frank C Ramos(3), David A Clague(4), Sean R Scott(3) 1. Institute of Marine Sciences, UCSC, Santa Cruz, CA. 2. Earth and Planetary Sciences, UCSC, Santa Cruz, CA. 3. Department of Geological Sciences, New Mexico State University, Las Cruces, NM. 4. MBARI, Moss Landing, CA.

U-Th disequilibria are reported for the two inflated portions (defined by bathymetric highs) of the Juan de Fuca Ridge (JdFR): Axial Seamount and the northern Endeavour segment. Both have broad axis-centered bathymetric plateaus, commonly attributed to the influence of the adjacent Heckle and Cobb melt anomalies, respectively. We explore structural and geochemical contrasts between them that imply fundamental differences in magma plumbing and/or transport processes.

The depth to the axial magma chamber (AMC) within the JdFR crust is shallowest beneath Axial Seamount and deepest and most variable beneath Endeavour. Lavas from Endeavour include the most enriched and diverse compositions of the JdFR. Endeavour N-MORBs are most similar to Axial basalts in K2O/TiO2, La/Yb, Na8, and Fe8 although most Axial basalts have lower MgO. Major element trends suggest clinopyroxene saturation at higher MgO at Endeavour. Additional basalt types from Endeavour (i.e., those with K2O/TiO2 >0.15), the West Valley segment to the north, and Southwest Seamount to the west share similar enrichments in incompatible trace elements (Th, Nb) and radiogenic-Pb. Similar characteristics are absent from basalts from the adjacent Heck and Heckle seamount chains, which are highly-depleted N-MORBs, precluding the hypothesis that thickened and inflated crust at Endeavour is associated with increased melt supply due to transit over the seamount source. In contrast, Axial basalts are more chemically homogeneous, and share selected geochemical characteristics with the adjacent Cobb seamount chain.

New uranium-series data suggest fundamental differences in melting parameters between inflated and non-inflated portions of the JdFR. Average Th/U at Endeavour (3.03 ± 6, n=10) is nearly indistinguishable from Axial (2.83 ± 9, n=17), but both are distinct from elsewhere on the JdFR (~2.1-2.5). That is, basalts erupted from regions of inflated crust have higher Th/U. Despite high overall compositional diversity in Endeavour basalts, Th/U variance is low, as in Axial basalts. However, there are differences in (230Th)/(232Th). Seventeen samples from Axial Seamount have (230Th)/(232Th) <1.22, the lowest on the JdFR axis. The range at Endeavour is 1.26-1.35, and highest in N-MORB. (230Th)-excesses [(230Th)/(238U) >1] are much higher at Endeavour (20-30%) than Axial Seamount (5-20%) and the rest of the JdFR (8-14%) but more similar to values of the adjacent Gorda Ridge to the south (up to ~25%). If differences in melt column characteristics (i.e., porosity, lithology, potential temperature) are similar along the JdFR, then ingrowth melt models predict slower upwelling of mantle-derived melts (e.g., longer residence time in the melt column) at Endeavour. Alternatively, Endeavour lavas may be generated from a more pyroxenitic (lherzolite) mantle where large degrees of disequilibria can be generated.

Contributions to Integration and Synthesis: 
This work details the integration of our geological (mapping), geochemical, volcanological, and preliminary geochronological study of the Juan de Fuca Ridge. Here we explore the geochemical systematics of the bathymetrically inflated sections to extract information on mantle melting parameters; these sections also have important geophysical contrasts.